Richardson's iteration for nonsymmetric matrices
نویسندگان
چکیده
منابع مشابه
Rayleigh Quotient Iteration for Nonsymmetric Matrices
Rayleigh quotient iteration is an iterative algorithm for the calculation of approximate eigenvectors of a matrix. Given a matrix, the algorithm supplies a function whose iteration of an initial vector, vQ , produces a sequence of vectors, vn . If the matrix is symmetric, then for almost any choice of v0 the sequence will converge to an eigenvector at an eventually cubic rate. In this paper we ...
متن کاملBlock AOR Iteration for Nonsymmetric Matrices
We consider a class of matrices that are of interest to numerical applications and are large, sparse, but not symmetric or diagonally dominant. We give a criterion for the existence of (and we actually construct) the inverse matrix in terms of powers of a "small" matrix. We use this criterion to find that the spectral radius of the Jacobi iteration matrix, corresponding to a block tridiagonal p...
متن کاملA Generalized Inverse Iteration for Computing Simple Eigenvalues of Nonsymmetric Matrices
Technische Universit at Dresden Herausgeber: Der Rektor A Generalized Inverse Iteration for Computing Simple Eigenvalues of Nonsymmetric Matrices Hubert Schwetlick and Ralf L osche IOKOMO-07-97 December 1997 Preprint-Reihe IOKOMO der DFG-Forschergruppe Identi kation und Optimierung komplexer Modelle auf der Basis analytischer Sensitivitatsberechnungen an der Technischen Universitat Dresden ...
متن کاملStable Perturbations of Nonsymmetric Matrices
A complex matrix is said to be stable if all its eigenvalues have negative real part. Let J be a Jordan block with zeros on the diagonal and ones on the superdiagonal, and consider analytic matrix perturbations of the form A() = J + B + O(2), where is real and positive. A necessary condition on B for the stability of A() on an interval (0; 0), and a suucient condition on B for the existence of ...
متن کاملInexact Inverse Iteration for Symmetric Matrices
In this paper we analyse inexact inverse iteration for the real symmetric eigenvalue problem Av = λv. Our analysis is designed to apply to the case when A is large and sparse and where iterative methods are used to solve the shifted linear systems (A − σI)y = x which arise. We rst present a general convergence theory that is independent of the nature of the inexact solver used. Next we consider...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1984
ISSN: 0024-3795
DOI: 10.1016/0024-3795(84)90219-2